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Complex simulation models of diseases are becoming widely used by researchers and planners. This paper shows
how simple analytic models can explain some otherwise inexplicable aspects of the behaviour of both these complex
models and of the diseases in the real world. A system for grouping communicable diseases on the basis of the
mathematical representation of the disease aetiology is developed.

Complex mathematical models of diseases are
becoming widely used. Research epidemiologists use
such models as a formal method for organising
complex ideas on a disease, and as a tool for testing
hypotheses about the epidemiology of the disease.
Planners are concerned with the rational allocation
of resources and use such models to assess the
effects of different intervention strategies.

The validity of these models is typically judged
by 2 criteria. The 'structural' criterion assesses
whether all the known micro characteristics of the
disease have been included in the model. For
example, in a model of typhoid fever the structure
of the model may be examined to see if allowance
has been made for the fact that after recovery
from the disease a person may remain a temporary
carrier. The second, or 'meta', criterion looks not
at structure but performance, asking whether the
output of the model accords with what is known
about the epidemiology of the disease in the real
world. For instance, the output of a typhoid fever
model will be examined to see whether the epidemic
curve is similar to that which has been observed
in actual typhoid epidemics.

Concern with satisfying either of these 2 criteria
inevitably leads to more and more detailed models
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which typically end up as complex, computer-based
simulation models. It is the contention of this paper
that in this process modellers have often 'lost sight
of the woods for the trees'. An attempt to explain
why certain epidemiological characteristics are
observed has been replaced by a demonstration
that when all the variables are 'plugged into' the
model, the output reproduces the epidemiological
characteristic of interest. This paper attempts to
show how a set of extremely simple mathematical
models which include only the central elements of
the more complex models, can explain certain
epidemiological phenomenon, while the complex
simulation models cannot explain but only,
apparently magically, reproduce these phenomena.

It should be emphasised that it is not suggested
that complex simulation models are not useful.
What is proposed is that formal disease models arc
likely to be most useful when a simple analytic
model is used in conjunction with a complex
simulation model. The analytic model can elucidate
the consequences of the basic assumptions of the
disease model and thus can help interpret the
output of the more complex and realistic model.
It will remain the task of the complex simulation
models to take account of the full complexity of
the aetiology of the disease and to satisfactorily
reproduce the epidemiological features of the
actual disease.

To demonstrate how such simple analytic models
can serve as useful adjuncts to the more complex
simulation models, 4 different groups of com-

265



266 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

municable diseases are examined. All of the diseases
in any one group share a common mathematical
representation of their aetiologies.

THE MODELS'
/.- Models of diseases with no superinfection and
with the force of infection determined by human
environmental contamination.
Examples of the simulation models which have been
developed for this category of disease are
Cvjetanovic's1 model for typhoid and Uemera's2

model for cholera. The typhoid model is examined
here. The detailed structure, as presented by
Cvjetanovic, is given in Figure 1, while in Figure 2
the essential elements of the underlying model are
presented in a simple didactic model.
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FIGURE 1 Cvjetanovic's Model for Typhoid Fever
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FIGURE 2 Simplified Model of Disease Type I

Assu mptions incorporated in thesemodels include:
(i) The infectivity of the environment is linearly
related to the number of infective human hosts.
(In the typhoid model the incubation differential
is linearly related to the product of the number of
susccptibles and the sum of the numbers of incubat-
ing infectious, sick infectious, temporary carriers
and permanent carriers.) Therefore, the number of
new infectives in each time period is related to the
product of the number of susceptibles and infectives.
(ii) Superinfection, or the simultaneous presence of
multiple infections in the host, is not permitted,
(iii) In the simulation model natural immunity to
infection is taken into account, but~in the analytic

model no allowance is made for immunity.
If Xt is the proportion of the population which

is susceptible to typhoid, 0 the rate of recovery
parameter, and 0 the infectivity parameter, then
the differential equation describing the system is:

dxt

_ = 0Y,-0X,Y,.
dt

Noting that Y, = 1 — Xt, the equation can be
rewritten as:

dt

which gives equilibrium values of X* of £• and 1.
The meaning of the second equilibrium value

is obvious: If there are no people infected, the force
of infection is zero and the disease is eradicated (in
this simplified world). The first equilibrium value,
viz. X* = rr is more interesting.
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FIGURE 3 The Effect of the Infective Factor (RI) in
Cvjetanovic's Typhoid Model

Cvjetanovic's simulation model has been used to
generate the proportion of the population free
from disease for a range of values of the 'infectivity
parameter' (RI in Cvjetanovic's terminology, /3
in the present paper). The result presented in Figure
3 is striking: despite the considerable elaboration
of the basic structure which Cvjetanovic's model
represents (including the treatment of immunity),
the linear inverse relationship, suggested by the
analytic model, holds precisely. According to
Cvjetanovic:

It was found that the size of the epidemiological
classes was almost linearly related to the reci-
procal of the force of infection RI . . . It is
thought that a stable level of endemicity can
establish itself only if the rate RI remains above
a certain critical value and that this value is* a
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function of the birth and death rates. Further
study in this direction might be fruitful.

The simple analytic model, then, provides a clear
explanation for a phenomenon which otherwise
remains confusing. '

This relationship between the proportion infected
and the infectivity parameter has considerable
utility in analysing health changes under different
environmental conditions: from a given prevalence
rate the implied value of the 'force of infection'
can be inferred, and then the value of j3 at which the
disease will be eradicated can be determined. For
this class of diseases it is striking that 0 need not be
reduced to zero for eradication.

While this result is in accordance with epidemio-
logical experience with this category of disease,
a great deal of caution should be exercised in drawing
inferences concering eradication. In reality the
disease is, of course, much more complex a
phenomenon, and the world is stochastic rather
than deterministic as assumed in the model. This
simple deterministic model, however, can be used to
investigate how stable any 'equilibrium' will be in a
stochastic world by examining the rate at which the
system will approach equilibrium after a transitory
perturbation away from the equilibrium position.
This is done by examining the 'restoring force'
which is the rate at which the system is returned to
equilibrium and which is represented mathematically
by AX( /At.

The difference equation may be written as:

^ 1 = B((Xoo-X,).(l-X,)).
At 0

When the equilibrium value (Xoo = TT) is small,
(1 — X t) will be approximately constant as Xt

approaches Xoo and the restoring force will be
approximately linearly related to (Xoo — Xt). When
the equilibrium value is large (i.e. Xoo is slightly
less than or equal to unity), as equilibrium is ap-
proached (1 — Xt) becomes progressively smaller
and the restoring force becomes progressively
weaker. This has important stability implications
when considering eradication of the disease in a
biological system subject to incessant perturbations.
If /3, the mean value of 0, is less then (p, the deter-
ministic model indicated eradication of the disease.
If P is a stochastic variable, however, we would
have: (i) a slow approach to the state Xt = 1 for
those cases in which 0 < </•; and (ii) a rapid approach

to Xt = | - when j3 > <p. Thus when 0 < <j> but 0 is

considered to be a stochastic rather than a determin-

istic variable, eradication may never be attained.
It is noteworthy that the complementary nature

of the size of the infective and susceptible pop-
ulations, and the relationship between these
population sizes and the rate of infection, ensure the
establishment of an equilibrium in this class of
diseases. The prevalence values at equilibrium are
not dependent on the invocation of an immune
response or other density-dependent effect.

//.• Models of diseases with no superinfection and
with the force of infection not primarily determined
by human environmental contamination.
Cvjetanovic et al4 have presented a simulation model
for tetanus (Figure 4). The essential difference
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FIGURE 4 Cvjetanomc's Tetanus Model

between this model and the communicable disease
models in group I above is that the human host is,
relative to the soil and the intestinal canals of
animals, an unimportant source of the tetanus
spore. Thus in Figure 4 the force of infection is
independent of the size of the human epidemio-
logical classes.
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FIGURE 5 Simplified Model of Disease Type II

The analytic analogue to the simulation model is
presented in Figure 5. The differential equation
describing the model is:

**L = 0Y.-0X,,
dt

or, since Y, = 1 — X,,

dt
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The solution to this differential equation is:

x, =•

whence Xoo = — £ — •
4, + p

Interesting distinctions between the typhoid and
tetanus models become clear with the use of the
analytic framework. The nature of the equilibriating
mechanisms is quite different. In the tetanus model
the differential equation is linear and there is, thus,
only one equilibrium point. This point is never an
end-point for a finite 0, implying that eradication
can take place only when 0, the infectivity parameter,
is reduced to zero.

With respect to the approach to equilibrium, the
case of tetanus is less complicated than that of
typhoid. In this case the difference equation can be
written as:

**S = <0 + 0).<Xoo-Xt).
At

The restoring force is linearly related to (Xoo— Xt)
and thus the disease prevalence is likely to be stable
in the vicinity of the equilibrium point. It is im-
portant to note that, despite the linearity of the
model, equilibrium is established without the
invocation of acquired immunity.

///.- Models of diseases with superinfection and with
the force of infection not determined by environ-
mental contamination.
MacDonald has developed 2 models — for an
arthropod-transmitted protozoal infection, malaria,
and a zoonotic helminthic infection, schistosomiasis6

— which fall into this category. These models are
examined in this section.

In his malaria model MacDonald assumed that
the amount of infective material to which the
population is exposed is not affected by the pro-
portion of the population harbouring the parasite,
and that the existence of infection is no barrier to
superinfection. The analytic model is given in
Figure 6.
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FIGURE 6 Simplified Model of Disease Type 111

The central point made by MacDonald is that the
rate at which individuals move from the state
'infective' to the state 'susceptible', or the 'effective

recovery rate', 0, is not equivalent to 0, the recovery
rate from a single infection.

The differential equation describing Figure 6 is

fJ*L = 0Y t-0X t ,
dt

whence Xoo = -$•— .
0+0

To investigate the relationship between 0 and 0,
we note that the mechanism underlying this disease
type may be considered as a classic immigration-
death process, giving an equilibrium value of:

Xoo= 1 - e (see7).

The relationship between 0 and 0 is thus defined
by the equality:

When the possibility of the host carrying more than
two infections simultaneously is neglected, the
equilibrium value of the immigration-death process
becomes Xoo = 1 — (3/0, whence 0 = 0 — 0. This was
the relationship between 0 and 0 determined by
MacDonald, who apparently did not realise that this
relationship held only when the possibility of more
than 2 infections was ignored.

In MacDonald's schistosomiasis model, the
assumptions of central importance pertain to the
quantitative relationships between the number of
hatched larvae (mericidiae), the snail population,
and the number of free-swimming larvae (cercariae).
MacDonald assumes that the possibility of super-
infection of the alternative (snail) host may be
ignored, with the result that the infectivity of the
alternative host becomes independent of the number
of infections it has received. The second crucial
factor is that the mean load is generally such that
the mericidiae are much more numerous than the
susceptible snails. The result is that modification in
the number of mericidiae within a very wide range
produces an insignificant change in the ultimate
number of infective snails.

Under the above assumptions, the force of in-
fection is unrelated to the worm load in the com-
munity, and the resulting model structure is
essentially that presented for malaria.

In contrast to malaria, however, superinfection
of the human host is the rule in schistosomiasis.
The 'susceptible'-'infective' dichotomy is no longer
useful since the relevant measure of infestation is
now the number of worms harboured by the indivi-
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dual. If CJ is the average number of worms carried
by an individual,

dT
whence co = f}/<p •

Again, the simple formulation provides insights
into the results emerging from the simulation model.
Examining the results of his simulation model,
MacDonald concluded that 'the ultimate level of
endemicity attained is almost exclusively dependent
on the number of snails, the frequency of entry to
water and the longevity of the worm'. Why this is
so is obvious from the simple analytic formulation
and the equilibrium value emerging from it: It is
the first two factors which are the determinants
of (3, while the longevity of the worm is represented
by 0.

Again the simple analytic form can be used to
examine the likely behaviour of the system in a
stochastic world. Rewriting the difference equation
as:

A i± = 1 (cooo-to t),
At 0

suggests that the system is likely to be stable in the
vicinity of the equilibrium point.

It should be noted that while no account is taken
of immunity, it is possible to obtain intuitively
plausible results. In particular, equilibrium is attained
without the invocation of immunity.

IV: Models of diseases with superinfection and with
the force of infection determined by environmental
contamination.
Until recently,10 there have been no epidemiological
models of helminthic infections in which the force
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of infection is determined by the degree of human
environmental contamination. Inferences concerning
the dynamics of this class of diseases (ancylo-
stomiasis, ascariasis, trichuriasis and strongyloidiasis)
have been made on the basis of epidemiological
models of other diseases (e.g. schistosomiasis). The
important differences in the nature of relationships
between different epidemiological classes make such
extrapolations inappropriate.

In common with other helminthic infections,
the unit of infectivity of the host is the number of
parasites harboured, whereas in most other infections
infectivity is a 'zero—one' phenomenon. The crucial
systemic distinctions between the infections of this
group (e.g. hookworm) and those of Group III
(such as schistosomiasis) is that whereas in the
schistosomiasis model the force of infection was
effectively unrelated to the egg output, in the hook-
worm model the force of infection is directly
related to the egg output in the faeces and thus to
the worm load in the population. If non-linearities
in the host are ignored, the following differential
equation describes the change in the average number
of worms harboured:

d i i '= 0W-0W
d t = 0 only for 0 = <p

and then at any (the initial)
worm load; or co = 0, for all <p and 0.

For /3 = <j> + e we have an infinite increase in the worm
load for e>0 and complete elimination of infection
for e<0. In short, the nature of the equilibrium
conditions makes it clear that the above model
does not represent the realities of hookworm
infection adequately. As has been shown by the
development of a complex simulation model (Figure
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7), it is only when non-linearities in the soil as a
result of competition and soil heterogeneity, and
acquired immunity in the host, are taken into
account that plausible results may be obtained.

This class of diseases is thus rather different
from those diseases in the first 3 groups. For the
diseases in Groups I, II and III, the simple analytic
models ignore immunity and other non-linearities
and yet show the broad system characteristics as
the more complex simulation models which do
include immunity. For Groups I, II and III, then,
the inference is that immunity does not play a central
role in maintaining an equilibrium, while in the
diseases of Group IV the role of immunity and
other non-linearities is central to the stability of
the system.

It is interesting to note that the particular
importance of immunity to the equilibrium of this
class of diseases has been stressed by helminthologists
with extensive field experience. Darling, for instance,
'was accustomed to stress the discrepancies between
the level of hookworm infection in the population
groups he had studied and their very great exposure
to infection, and repeatedly stated in conversation
that the development of an acquired immunity in
these populations seemed to him the only explanation
of the failure of their worm burdens to increase
until they were all killed by their hookworms'.11

CONCLUSION
The simple analytic models developed in this paper
provide useful insights into the dynamics of more
complex simulation models and insights into the
nature of the equilibriating mechanisms in these
models. The classification of the models indicates
that there are 2 primary criteria on which the
communicable diseases are to be grouped. Firstly,
can the individual be adequately described as
'infected' or 'free from infection' or does super-
infection take place; and, secondly, is the force of
infection dependent on the degree of human environ-

mental contamination or not? The classification
system is potentially useful in suggesting which
infectious diseases may respond similarly to, say,
changes in water supply or excreta disposal con-
ditions. Thus in a study of the effect of environ-
mental changes on health, the classification system
may be used to select 'indicator diseases' from the
wide range of diseases of possible interest.
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