The Optimal Spacing of Interfering Wells:

An Analytic Solution

by John Briscoe®

ABSTRACT

An exact expression is derived for the optimal spacing
between interfering wells in a rectangular well field in an
ideal confined aquifer. A simple, practical method for
determining the optimal spacing is presented. The optimal
spacing is shown to be substantially different from the
spacing determined by use of the Theis formulation. The
economic savings resulting from use of the revised approach
are evaluated and found to be considerable, especially when
the number of wells is large and the transmissivity of the
aquifer low.

1. INTRODUCTION

It has long been recognized that the optimal
spacing of pumped wells in a well field involves a
trade-off between pumping costs (which increase as
well spacing is reduced and interference increases)
and the costs of connecting pipelines (which
decrease as well spacing 1s reduced).

The most comprehensive treatment of the
subject of optimal well spacing was presented by
Hantush (1961 and 1964). Hantush derived
expressions for four different cases, namely a
group of three wells forming an equilateral
triangle, and groups of two, three, and four wells
equally-spaced along a straight line. In all cases,
Hantush assumed that the wells each were pumped
at the same rate, and that the annualized cost per
unit length of the connecting pipeline was
constant.

In 1963 Theis undertook a similar analysis,
examining only the two-well case, although he
made a special note that “if more than two wells
are to be pumped, the analysis will have to be
modified to take (this factor) into account” (Theis,
1963).

Since these initial investigations, the problem
of an analytic solution to the optimal well spacing
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problem has received little further attention. Many
current ground-water textbooks (e.g. Todd, 1980;
and Freeze and Cherry, 1979) ignore the well-
spacing problem entirely. Others (e.g. Heath, 1980)
present the Theis formulation as a general solution
to the problem of optimal well spacing, ignoring
the caveats put on the use of the formulation by
Theis himself.

The purpose of the present analysis is to
assess the appropriateness of the Theis formulation
for the optimal spacing of a series of wells in a
rectangular well field in a confined homogeneous
aquifer with boundaries at infinity. It is assumed
that all wells are pumped at the same rate, and that
the cost of each section of connecting pipeline
depends on the flow to be carried in that section.

2. NOTATION
The symbols in this paper are defined where
they first appear. They are assembled alphabeti-
cally for convenience in Appendix I.

3. WELL FIELD COSTS
Following Hantush (1961), the yearly cost of
operating a well field may be expressed as:

Total annual  Annualized cost  Annual cost of pumping

cost of = of connecting  + against additional head
operation pipelines caused by interference
or

Cr=Cp +(Cy
where

Crt is the total yearly cost of connecting pipelines
and of operation as affected by well
Interference;

Cp is the annualized cost for maintenance,
depreciation, and original cost of connecting
pipelines;

Cp s the annual cost of pumping against addi-
tional head caused by interference; and

M N
Ct =Cp +cqtp '21 .21 Sij (A)
1: J:
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Fig. 1. Layout of wells in a rectangular well fieid.

where

Cp is the total annualized cost of the piping
system;

¢ Is the unit cost of raising a unit volume of
water a unit height;

q  is the rate at which each well in the field is
pumped;

N  is the number of “columns’’ of wells;
M is the number of “rows’ of wells;

sij s the total drawdown in well (i,j) due to
pumping of all the other wells; and

to is the period of continuous pumping.

The optimal value of the well spacing, m*, is
determined by solving the equation
oce ° 22 =0, (B)
— + cqtp — Sij =
om dto am i Y
and checking that the appropriate second-order
conditions are met.

4. DRAWDOWN EQUATIONS

The rectangular well field considered in this
analysis is illustrated on Figure 1.

The aquifer is assumed to be ideal
(homogeneous, isotropic, with boundaries at
infinity), and confined, with the wells fully
penetrating. The first task is to develop an
expression, sjj, representing the drawdown in the
(i,j)th well due to pumping in all of the other
wells. To do this, first consider the general case
presented in Figure 2.
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Using the Cooper-Jacob expression (which is
valid for small r and large t) for the drawdown in
the observation well,
2.3q, 2.25Tt
47T B )s

S:

where

s is the drawdown in observation well due to
pumping well “a”’;

qa Is the rate at which water is pumped from a
well a distance r, from the observation well;

T  is the transmissivity of the aquifer;
t  is the time since pumping began;
S is the storage coefficient in the aquifer; and

r, is the distance between the observation well
and the (a)th pumping well.

Applying the principle of superposition, the
total drawdown in the observation well due to
pumping of wells “a” and “b” is

2.3q, 2.25Tt 2.3qp 2.25Tt
s= og + og
47T ra? S 47T rp? S

forqa=qp =4
23q . 225Tt . 2.25Tt
lo 1
s = ot o8 2s Tty
2.25Tt
=2y o flog
4T (- )% S

i.e., the drawdown in the observation well is
precisely the same as the drawdown which would
result from a single well being pumped at 2q and
located a distance (r, * rb)'/2 from the observation
well.

Similarly, it can be shown easily that the
drawdown in an observation well due to pumping

in N other wells located ry, r,, . . . rny from the
r
Observation . a L q
Well * a
0/’ Pumping
Well
4
s a

Fig. 2. The effect of pumping on an dhservation well.
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Fig. 3. Equivalent well system,

observation well is equivalent to the drawdown in
the system shown in Figure 3.

Returning to the case of the rectangular well
field in Figure 1, the drawdown in well (i, ]) due to
pumping in the other (MN-1) wells is equivalent to
the drawdown from a single well pumping q(MN-1)
located a distance Iﬁij from well (i,j) where mj; is
the geometric mean of the distances of all other
wells from well (i,]).

The distance of well (k,1) from well (1,j) is

VK m? + GD? m? = mV/ kY + (17
whence
mj={ 0 I m[Gk)?+ (D] % y1/MN-1
vk ¥l

except

k,D=G@Gp

Le.,

M =m{I 1[Gk )] PRAMND ()

except

k,D=Gj)

Recall, from equation (A), that in determining
the total additional cost of pumping due to inter-
ference, it is necessary to evaluate the expression

M N

I I sjj, that is, the total additional drawdown
i=1 j=1

in all of the wells. Using (C),

23q(MN-1)  2.25Tt

ZTs;i=22 o
1 [ 47T & r?)ijz S

2.25Tt

rYlijZ S

_2.3q(MN-1)
47T

Z log

_ 2.3q(MN-1) 2.25Tt

47T

MN log "
i=1 j=1

That is, the total drawdown in the system (2 Z sjj)

is equivalent to the drawdown induced by a single

well pumping [q(MN-1) - MN] at a distance myye

from the well, where
_ M N _
Myye = (I T mij)
1=1 j=1

1/MN

le.,

Mye zm{nu{ll_{l

n [(i'k)2+(j-l)2] }]./Z(MN-I) }l/MN
1] |

except

(k,D)=(1,])

sm{00 1 1 [(k)2+ (1)) 2MNMND
ij ko1
CXCCpt

k,D)=(@1,j)
=m -+ f(M,N)
and

oy 2.3q(MN-1)MN 2.25Tt
Sii = T
4 47T %8 L Sm? F(M.N)?

whence

0 MN-1)MN
om 27Tm

5. PIPELINE COST FUNCTION
At present prices, the optimal velocity of
water in a transmission pipeline is about 1.2 m/sec
(Olson, 1976), whence

D = 0.0035 q”
where D is the pipeline diameter in m; and q is the
flow in m*day.
The capital cost of an installed pipeline (y, in

$/m) can be related to the diameter of the pipeline
(in m) through the equation

y =392 D!3 (Deb, 1978),
whence
y =0.25 qO‘65 ($/m).

Assuming an effective life of 30 years for the pipe-
line and an interest rate of 12% per annum,

0.12(1.12)*°

Capital Recovery Factor = T 0.124
whence
ya = 0.03 qo'és ($/yr/m)
or, in more general form,
0.65

ya = bq
where b is the cost of a unit length of pipe carrying
a unit flow (= 0.03 in 1978 prices); and y, is the
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annualized cost of a unit length of the pipeline.

The flows in the pipe network are shown in
Figure 1. Consider first the cost of the connecting
(E-W) pipes for any row of wells on Figure 1. The
cost of the pipes for one row is

(N-1)/2
= bmq0'65 2 j§1 j0‘65) for odd N.

Therefore, for odd N and odd M,

(N-1)/2
Cost of E-W pipelines = M mbq®%®> 2~ ="~ j06%)
j=1

and

(M-1)/2
065 5 j065)

Cost of N-S pipelines = mb (Nq)
J=1

Thus, the total cost of the pipeline is
(a) for Mpqd and Nodd:
(N-1)/2 M-1)/2
bq0.65 m[2M  x J0.65 + 2N0.65 5 J0.65]
and (b) for Myqq and Neyen:

(N-2)/2
z

=1

M-1)/2
g J0.65 }

j=1

" NO.65 2

6. OPTIMAL WELL SPACING
Substituting from equation (D) and the
differential of the pipeline cost expression into
equation (B), (for Modd and Nodd):

(N-1)/2 | M-1)/2
J0.65 + 2N0.65 ¥ J0.65]
j=1 =1
GMN-DMN
27Tm*

bqO.éS [2M

- tho

’

whence

qu'ssto (MN-1)MN
6.3Tb

*
mA:
(N-1)/2, M-1y2
M jzl J0.65+2N0.65 421 J0.65

= J:

7. COMPARISON WITH THEIS
TWO-WELL FORMULATION
The Theis formula for the optimal spacing
between wells 1s often used (see, for example,
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Heath, 1980) for multiple-well fields, despite the
fact that Theis specifically limited the application
of his formula to the case of two wells. An assess-
ment will be made of the magnitude of the error
involved in using the Theis two-well formulation
for the optimal spacing between wells rather than
expression (E).

For N=2, M=1, the Theis conditions,
expression (E), with the appropriate expression for
the cost of connecting pipelines, gives

35
* 2cq1 to
Suba: S} F
T T 3T ®
(If the standard form for pipeline cost, viz,
cost = k X m, rather than the form actually used,

viz, cost =m X bq0‘65, then equation (F) reduces
to:
1.35 0.65
m+ = const X bq
T T bT k

= const. q¥kT

which is the Theis expression for optimal well
spacing.)
From (E) and (F), for Mgdq and Ngqdq

*
m MN (MN-1)
S (N-1)/2 M-1)/2 )
M .2 :0.65 n N0.65 ) j0.65>

J .
1=1 1=1

The expression (G) is evaluated for a variety
of values of M and N and the results presented on
Figure 4, which gives a simple method for calcu-
lating the optimal well spacing in a rectangular
well field:

(1) m*¥ can be calculated using the standard
Theis formula [see Theis (1963), Walton (1970),
Heath (1980), or equation (F) above] .

(2) mj /m7T can be read off Figure 4 for any
M and N;

(3) mj, the actual optimal well spacing, is the
product of the numbers derived in (1) and (2)
above.

8. SENSITIVITY ANALYSIS

In his original analysis of the optimal spacing
of two wells, Theis (1963) stated that ‘““the graph
of corresponding values of the total annual cost
and the distance between two discharging wells is
a curve that is relatively flat in the neighborhood
of the minimum value; placing wells at distances
that are somewhat more or less than that found
(by the equation) would not appreciably increase
the cost.”
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Fig. 4. Ratio of optimal well spacing to Theis well spacing
for a rectangular well field,

In the present analysis it has been shown that,
as the number of wells increases in a well field, the
Theis formulation dramatically underestimates the
optimal spacing between adjacent wells. The
Important question, however, is not so much
whether mT and my are different, but rather what
the economic cost of using m} instead of my may
be. This sensitivity analysis can be undertaken only
for specific aquifer conditions. Accordingly, the
analysis was undertaken for aquifers with trans-
missivities typical of high-yielding aquifers in the
coastal plain of the southeastern United States, viz,

T =100 wl/day

Number of Wells
0 ] ] ! | ] ] J [

2 4 6 3 10 12 14 16 13 20 22

Fig. 5. Economic cost of using m} instead of mj in a linear
well field,

T = 100 m%day, 200 m*day, and 2,000 m?%day. It
was further assumed that: S = 0.002, t, = 365 days,
q = 1,900 m*day, b = 0.03, and ¢ = 0.17 X 10 $/m’
(corresponding to $0.03/kwh and a combined pump
and motor efficiency of 50%).

For a variety of values of M and N, the values
of my and mT were calculated from equations (E)
and (F) and the following expression for total
annualized cost evaluated:

(N-1)/2
Cr(mM,N)=bq"® m[2m ¥ OO

j=1
(M-1)/2 2
£2N 5 {9957 4 0.18 S% to MN(MN-1)
1=1
1 2.25Tt
* 10
Sm?2 (NI [(i-k)2+(j-1)2] 1/{2MN(MN-1)}
1jkl
except
&, D=(,))

The loss of economic efficiency (Thomas,
1971) due to the use of the incorrect spacing
(m7) rather than the correct spacing (my ) is
determined by calculating

%lossof  c(mX M, N)- C(m}, M, N)
economic = 8
efficiency C(my, M, N)

Considering the case of M =1 (a linear well
field), the loss of economic efficiency is deter-
mined for different T and N and the results
presented on Figure 5. (Since fixed costs were not
included in the cost equations, the efficiency losses
indicated on Figure 5 are thus somewhat inflated.)
Figure 5 shows that, when the number of wells is
small, the loss of economic efficiency from use of
m7 insteady of my is small despite large differ-
ences between m} and my , confirming Theis’
observation in this range. As the number of wells
increases, however, the loss of economic efficiency
becomes substantial, especially for aquifers of low
transmissivity, and it becomes essential to use the
revised formulation for optimal well spacing (my )
rather than the formulation developed by Theis
for the two-well case (m7T.).

Turning to the general case of a rectangular
well field, it emerges that the loss of economic
efficiency for a total of P wells in the rectangular
case is similar to the loss of economic efficiency
for P wells in the linear case. That is, as in the
linear case, the losses increase as the total number
of wells increases and as the transmissivity of the
aquifer decreases. Thus, when there are several

577



wells in a field and when the transmissivity of the
aquifer is not extraordinarily high, substantial
savings are obtained by using the revised optimal
well spacing (mjy ) rather than the spacing based on
Theis’ analysis of the two-well case (mT).

9. CONCLUSION

An expression has been derived analytically
for the optimal spacing between wells in a
rectangular field in an ideal, confined aquifer. It
has been shown that the optimal spacing is
substantially different from the spacing deter-
mined by use of the Theis formulation and that the
economic savings resulting from use of the revised
approach are substantial, especially when the
number of wells is large and the transmissivity of
the aquifer low.

APPENDIX I. NOTATION
The following symbols are used in this paper:

b The cost of a unit length of pipe carrying a
unit flow.
c Cost of raising a unit volume of water a

unit length, consisting largely of power
charges, but also properly including some
additional charges on the equipment.

C Annualized cost of pumping against addi-
tional head caused by interference.

Cp Annualized cost for maintenance, deprecia-
tion, and original cost of connecting
pipelines.

Cr Total yearly cost of operation as affected
by well interference and of connecting
pipelines.

D Diameter of pipeline.

f(M,N) A function depending only on M and N.

1,j Subscript for well in ith row, jth column.
m Spacing between adjacent wells.

m* Optimal spacing between adjacent wells.
my  Actual optimal spacing.

m7 Optimal spacing from Theis formulation.
rﬁij Distance from (i,j)th well to “equivalent”

pumping well.

myuve Equivalent distance for computing total
drawdown in well field.

M Number of rows of wells.

N Numbers of columns of wells.
Flow rate.

r Distance from pumping to observation
well.

sij Drawdown in well (i,j) due to pumping in

other wells.

Storage coefficient.

T Transmissivity.

to Period of continuous pumping.
y Capital cost of pipeline.

Ya Annualized cost of pipeline.
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