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incidence based on the population from the Detroit
Surveillance, Epidemiology, and End Results Program
for women of the same ages and birth cohorts. Mothers
and sisters of controls had the expected breast cancer
incidence rates for the Detroit population.

In general, completeness and accuracy of reporting
of family history of disease appear to depend on the
disease, the relative, and the population under consid-
eration. Because this bias is potentially devastating to
genetic epidemiology, Go et al. (2) and Macera (3)
addressed this problem for breast cancer several years
ago. For approximately 800 relatives of breast cancer
patients and unaffected women, we assessed recall bias
by contacting or reviewing records for all relatives,
whether or not they were reported to be affected. In
that sample of Caucasian women in the United States,
there was no difference between women with breast
cancer and unaffected women in recall accuracy for
breast cancer among their mothers and sisters. Both
groups were extremely accurate: There were only two
discrepancies among the approximately 800 relatives
followed. However, reporting accuracy of breast cancer
among mothers and sisters cannot be extended to more
distant relatives, other diseases, other populations, or
male respondents. For example, reporting of ovarian
and endometrial cancers was not equally reliable by
patients with these diseases and controls (Schwartz et
al., unpublished data). As Mantel (4) indicates, it may
be that reporting of dementia is similarly biased. For
these and most other conditions, independent verifi-
cation would be necessary. Reporting of cancer among
more distant relatives is also likely to be incomplete.
Finally, reporting by subjects in migrant and/or im-
poverished populations has not been consistently re-
liable, in our experience (3, 5, 6). Underreporting in
these populations may be due to both a history of
inadequate medical care and the geographic separation
of migrants from their relatives.

We should also note that the only chromosome for
which women are more closely related to their sisters
than to their mothers is the X chromosome. Although
the genetics of breast cancer susceptibility are com-
plex, X-linkage of genes strongly influencing suscep-
tibility to this disease can be excluded (2, 7). Based on
genetics alone, there is no reason to expect breast
cancer risk for sisters to be higher than the risk for
mothers of patients.
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INGESTED DOSE AND DIARRHEA TRANSMISSION ROUTES

In a stimulating theoretical paper, Briscoe (1) con-
sidered a hypothetical experiment, in which volunteers
ingested various doses of an imaginary diarrhea-
causing pathogen having a log-linear dose-response
relation and showed that reductions in the ingested
dose do not necessarily lead to proportionate reduc-
tions in the incidence of disease. Briscoe concluded
that the elimination of one of several important fecal-
oral transmission routes cannot be expected to cause
measurable reductions in disease incidence.

Briscoe's analysis ignores the important factor of
time. If the dose of a pathogen ingested from each
transmission route is not constant through time, it is
possible for each episode of diarrhea to be caused by
a single transmission route, even though more than
one route is important in the community. If this is the
case, the elimination of an important route will reduce
the incidence of disease in proportion to the number
of episodes it causes. The validity of Briscoe's model
therefore depends on two questions: 1) Over how long
a period of time can an infectious dose be accumulated
without reducing the probability of infection? 2) How
widely does the ingested dose vary between periods of
that length?

With regard to the first question, it is clear that if
a dose can accumulate over a protracted period of
time, this will smooth out short-term variations in the
numbers of pathogens ingested. However, in the case
of diarrheal diseases with incubation periods of 1-3
days, organisms which have not colonized the intestine
within 24 hours of ingestion are unlikely to be affected
by others that reach the intestine the following day.
Among pathogens sensitive to gastric acidity, which
affects most bacteria (2), the vast majority die within
a short time of ingestion, reducing the maximum
period of accumulation to much less than one day.
Indeed, there is reason to believe that most infections
caused by doses less than the median infective dose
(IDw) are initiated by a single organism (3) which has
survived the mortality of the "decisive" initial stage
(4). Two bouts of diarrhea caused by the ingestion of
infectious doses on different days can, of course, over-
lap, but the chance of this is small in practice.

If pathogen doses cannot accumulate from one day
to the next, the question of the daily variation in the
dose arises (question 2). It can be assumed that the
dose of any diarrheal pathogen received via a partic-
ular route varies from day to day no less than the
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corresponding dose of fecal indicator organisms, for
the following reasons.

Three types of factors determine the ingested dose
of a specific fecal organism: 1) elimination or regrowth
in the environment; 2) the amount of fecal matter
ingested; and 3) the concentration of the organism in
that fecal matter at defecation.

Regarding the first factor, regrowth of pathogens
may be greater or less than that of fecal indicator
bacteria. (This discussion excludes viral and protozoal
pathogens, which cannot multiply in the environ-
ment.) However, indicator species are chosen to sur-
vive longer in the environment than do pathogens.
The second factor, the amount of fecal matter in-
gested, affects pathogens and indicators equally. With
regard to the third, the number of fecal indicator
bacteria per gram of human feces normally varies
within a range of one or two logio cycles (2). On the
other hand, the concentration of a particular pathogen
ranges from zero in uninfected persons to thousands
of millions per gram in some clinical cases of diarrhea
(5). The three factora together argue that the ingested
dose of pathogens will vary no less than, and probably
more than, the dose of fecal conforms.

Consider first the dose ingested from the water-
borne transmission route. Fecal conform concentra-
tions in water from open wells typically vary by about
one cycle of logarithms between consecutive samples,
and the highest readings are usually isolated events
followed by much lower values (6). Concentrations of
fecal bacteria in streams are also likely to attain short-
lived peaks during periods of high flow, as excreta are
washed into them or flushed from the banks (7). Spira
et al. (8), quoted by Briscoe (1), found concentrations
of Vibrio cholerae varying from zero to more than
10,000 colony-forming units per 100 ml in surface
water sources and in household cooking water.

With regard to food contamination, the usual situ-
ation is that only a minority of cooked food samples
are detectably contaminated at all. When fecal con-
tamination has occurred, the possibility of regrowth
increases the range of bacterial concentrations. This
is illustrated by the data in table 1, collected in a
village in The Gambia, which show fecal coliform
concentrations varying over four logarithmic cycles.
As might be expected, fecal pathogens occur less fre-
quently on food samples than do fecal colifonns; Spira
et al. (8) found V. cholerae in only 0.13 per cent of
food samples.

The foregoing data suggest that a person does not
ingest a constant daily dose of pathogens from each
transmission route, but rather ingests a number of
pathogens which may often be zero and which on
other days vary by one or more factors of 10. While
this range may be small in comparison with experi-
mental dose-response relations (9-11), it is sufficient
to ensure that the doses ingested from different routes
on a given day are not normally of the same order of
magnitude as one another. On any given day, the dose
from one route will be far greater than all the others,

TABLE 1

Concentrations of Escherichia coli in various foods in
Gambian households*

Boiled
foods

Steamed
foods

Escherichia coh not found
E. coli present in 0.1 g
E. coli present in 0.001 g
E. coli present in 0.00001 g

No. of samples examined

60
27
5
7

99

95
26
20
8

149

' Unpublished data collected in 1977 by R. A. E.
Barrell at the Medical Research Council Laboratories,
Keneba, The Gambia.

so that each episode of diarrhea will be caused by a
single transmission route and not by an additive ac-
cumulation of different doses as postulated in Bris-
coe's model.
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THE AUTHOR REPLIES

The letter from Cairncross (1) concerns the omis-
sion of a particular factor (time) in my paper (2). In
this reply, I will show that inclusion of this factor does

not affect the major conclusion of the original paper,
namely that it is incorrect to " . . . assume that the
ratio 'number of cases eliminated:number of residual
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cases' measures the relative importance of the elimi-
nated route vis-a-vis the residual transmission route"
(2, p. 449). I will conclude with a discussion of the
criteria by which simple didactic models of the sort
presented in the original paper should be judged

INCLUDING TIME IN THE MODEL

As Cairncross correctly points out, "the dose of a
pathogen ingested from each transmission route is not
constant through time" (1). The simple model pre-
sented in the original paper can be adapted to incor-
porate this modification. Assuming, as in the original
paper (2), a log-linear dose-response curve, a version
of the model in the original paper (now with just two
transmission routes) which incorporates frequency
distributions (rather than constant transmission) can
be constructed. The baseline situation shown in table
1 includes transmission through a "red route" (with
frequencies based on the frequency of fecal colifonns
in traditional water supplies in rural Africa (3)) and a
"blue route" (with frequencies derived from the food
contamination data for rural Africa presented by
Cairncross (1)).

Now let us consider the case in which an improve-
ment is made in the red route. (Specifically, the fre-
quency distribution for the red route is changed from
that of a traditional rural African water supply to that
of an improved piped water supply in rural Africa
(based on data in Young and Briscoe (3).) The "post-
intervention" situation is presented in table 2.

If tables 1 and 2 were presented to an epidemiolo-

gist, he might say, "There has been a major improve-
ment in the red route (with the mean number of
organisms transmitted through this route reduced by
83 per cent), yet the overall reduction in disease is
only 42 per cent I therefore conclude that the blue
route (the only other route) must be at least as impor-
tant as the red route and expect that a similar im-
provement in the blue route would have a similar effect
on disease."

Ideally, however, we should test the importance of
the blue route directly (by actually reducing transmis-
sion through the blue route) rather than indirectly (by
inferring the importance of the blue route from the
results of improving the red route). If we make an
improvement in the blue route similar to the improve-
ment made in the red route in the first simulation
(reducing the average number of organisms transmit-
ted through this route by 83 per cent), then the situ-
ation is as represented in table 3.

From tables 1 and 3, it can be seen that reducing
the mean number of organisms transmitted through
the blue route by 83 per cent did not result in a
reduction in disease of about 42 per cent (as our
epidemiologist had inferred from tables 1 and 2), but
in a reduction of just 14 per cent.

The major point of the original analysis (the so-
called "residual fallacy") was that

. . . if the dose-response relationship is nonlinear,
if there are several transmission routes, and if
the effects on disease incidence of eliminating
one transmission route are known, then it is

TABLE 1

Baseline situation

No. of times/100 days that count equals
0

10
100

1,000
Mean count
No. of infections

Red

15
0

15
70

716
(15 x 0) + (0 x 0.33)

+ (15 x 0.67) + (70 X 1)
- 8 0

TABLE 2

Situation after intervention in red

No. of times/100 days that count equals
0

10
100

1,000
Mean count
No. of infections

Red

30
40
20
10

124
(30 x 0) + (40 x 0.33)

+ (20 X 0.67) + (10 x 1)
= 37

Blue

60
20
10
10

112
(60 x 0) + (20 x 0.33)

+ (10 x 0.67) + (10 x 1)
= 23

route

Blue

60
20
10
10

112
(60 x 0) + (20 x 0.33)

+ (10 x 0.67) + (10 x 1)
= 23

Total

827

103

Total

236

60
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TABLE 3

Situation after improvement in the blue route

No. of times/100 days that count equals
0

10
100

1,000
Mean count
No. of infections

Red

15
0

15
70

715
(15 x 0) + (0 x 0.33)

+ (15 x 0.67) + (70 x 1)
= 80

Blue

85
4

10
1

20
(85 x 0) + (4 x 0.33)

+ (10 x 0.67) + ( 1 X 1 )
= 9

Total

735

89

fallacious to assess the relative importance of
the eliminated and residual transmission routes
by comparing the reduction in incidence due to
elimination of the one route, on the one hand,
to the residual incidence of the disease, on the
other (2, p. 451).

In this analysis, it has been shown that, even when
allowance is made for the fact that the dose of a
pathogen ingested from each transmission route is not
constant through time, the danger of the residual
fallacy remains.

THE U8E OF SIMPLE DIDACTIC MODELS

Caimcross' concerns raise a more general problem
about the use of simple didactic models such as that
presented in the original paper. Epidemiologic phe-
nomena are inevitably complex. Attempts have been
made to develop detailed simulation models which
include the multitude of factors which affect the epi-
demiology of real-world diseases (4). It has been ar-
gued that, while such elaborate modeling exercises are
useful for some purposes, they are not effective in
giving a reader an intuitive grasp of the central dy-
namics of the disease. It has also been argued that
simple models, the function of which are to give the
reader a good understanding of the "woods" but not
of the "trees," can be useful in transmitting this in-
tuitive grasp (5).

Accordingly, the criterion by which simple didactic
models must be judged is not the degree of "complete-
ness" (as discussed in the original paper (2, p. 455), a
more complete model " . . . would probably be stochas-
tic and would certainly include other epidemiologi-
cally-significant phenomenon [sic] such as infec-
tion:case ratios and the effect of acquired immunity"),
but rather 1) the degree to which the model explains
the macroepidemiologic features of interest, and 2) the
ease with which readers grasp and maintain an under-
standing of the underlying structure of the model.

With regard to the first criterion, in the particular
case at hand the conclusions emanating from the
original model (and the modification presented here)
concur with an emerging body of empirical data. A
few examples follow.

1) International comparisons. It has been shown
that the impact of improved water supply has been
greater in middle-income countries than in poor coun-

tries (6), and it has been hypothesized that this is
because in the middle-income countries prior reduc-
tions in certain other transmission routes have taken
place (2).

2) National experience with infant mortality over
time. In Chile, it has been noted (7) that almost all of
the early interventions to reduce disease transmission
appeared to be ineffective, while during the last decade
it appears that many interventions have been success-
ful (presumably because these recent interventions
were eliminating the residual routes of transmission).

3) Specific diseases as sanitation improves. For both
polio (8) and typhoid (9), it has been shown that initial
improvements from "appalling" to "bad" sanitation
were associated with an increase in the prevalence of
severe disease, and that it was only once sanitary
conditions became "good" that the anticipated de-
clines in severe disease were observed.

With regard to the second criterion, the simple
model presented in the original paper appears to be
easily understandable and to give readers an intuitive
grasp of the interactions (which arise from many
causes) between different transmission routes.

It thus appears that, while the model certainly
omits important factors (just one of which Caimcross
has discussed) and can never be considered a definitive
model of all aspects of the transmission of fecal-oral
diseases, it satisfies the criteria by which simple di-
dactic models should be judged.

REFERENCES

1. Caimcross S. Ingested doae and diarrhea transmission
routes. Am J Epidemiol 1987;125:921-2.

2. Briscoe J. Intervention studies and the definition of dom-
inant transmission routes. Am J Epidemiol 1994; 120:449-
55.

3. Young BA, Briscoe J. Water and health in rural Malawi:
aspects of the performance, utilization and health impact
of the Malawi Self-Help Rural Water Supply Project.
Lilongwe, Malawi: US Agency for International Devel-
opment, 1986.

4. Cvjetanovic B, Grab B, Uemera K. Dynamics of acute
bacterial diseases. Geneva: World Health Organization,
197&

5. Briscoe J. On the use of simple analytic mathematical
models of communicable diseases. Int J Epidemiol
1980#285-70.

6. Shuval HI, Tilden RL, Perry BH, et aL Effect of invest-
ments in water supply and sanitation on health status: a



LETTERS TO THE EDITOR 925

threshold saturation theory. Bull WHO 1981;59:243-8.
7. Brunser 0 In: Briscoe J, Feachem RG, Rahaman MM,

eds. Evaluating health impact: water supply sanitation
and hygiene education. Ottawa, Ontario, Canada; Inter-
national Development Research Center, 1986:256.

8. Gregg MB. Poliomyelitis. In: Last JM, ed. Maicy Rosenau
public health and preventive medicine. 1 lth ed- New York:
Appleton Century Crofts, 1980:149-52.

9. Homick RB. Selective primary health care: strategies for

control of disease in the developing world. 20. Typhoid
fever. Rev Infect Dis 1985;7:536-46.

John Briscoe
Operations Policy and Research Division
Water and Urban Development Department
World Bank
Washington, DC 20433

RE: "BINOMIAL REGRESSION IN GLIM: ESTIMATING RISK RATIOS AND RISK
DIFFERENCES"

Wacholder has described the use of the program
package GLIM in the analysis of cumulative incidence
type of data (1). Here we present an analysis of case-
control data based on the same procedures.

Logistic regression in case-control studies uses the
logarithm of the odds of the probability P of being a
case. With / strata, with K variables in the model, and
on the assumption of constant odds ratios (OR) over
the strata, the model is

- P,))

= o, + + bKXK

where exp(6j,) is interpretable as the ratio of the odds
associated with a one unit change in the kth variable
Xk, i.e., for a dichotomized variable exp(6k) is the ratio
of the odds for the exposed to the unexposed. Maxi-
mum likelihood estimates of the 6's are easily obtained
by the use of GLIM with the macros described by
Wacholder.

To illustrate the application of these for case-
control data, we have considered the data from a study
on the relation between coffee consumption and myo-
cardial infarction used as an example by Rothman
and Boice (2). The GLIM program to analyze these
data using logistic regression is given in the Appendix.
Each of the five data lines starting with READ gives
the data for one stratum. The columns give numbers
of cases and controls, respectively, for three different
exposure levels beginning with the unexposed.

The data printout gives parameter estimates of the
b's with corresponding standard errors. The odds ra-
tios for medium consumers of coffee compared with
nonconsumers and for heavy consumers of coffee rel-
ative to nonconsumers were consistently estimated at
1.60 with a 95 per cent confidence interval of 1.22-
2.09 and at 2.19 with a 95 per cent confidence interval
of 1.55-3.11, respectively.

The chi-square value based on the scaled deviance
was xi = 9.73 which corresponds to a p value of 0.28.
For evaluation of the model, GLIM also provides

observed and expected numbers in each cell (data not
shown). Several alternative models are possible, in-
cluding models with interaction terms and those ana-
lyzing the trend (3).
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THE AUTHOR REPLIES

Alfredsson and Ahlbom correctly point out that
GLIM is a useful program for analyzing case-control
data (1). In their monograph on case-control studies,
Breslow and Day (2) sketched the mechanics of a
logistic analysis of case-control data using GLIM.

Indeed, the authors of at least two recent papers in
this Journal used GLIM for this purpose (3, 4). No
macros are required, since the built-in GLIM com-
mand $ERROR B N $ can be used to indicate logistic
regression with binomial denominator N. Thus, a sim-
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